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1. INTRODUCTION

The study of the re#ection and transmission coe$cients of acoustic waves in ducts of
continuously varying cross-sectional area has been of interest to many researchers in the
past. Thus, various numerical methods for predicting these coe$cients have been
developed, such as the method of weighted residuals [1}3], the "nite element method [4, 5],
the perturbation method [6, 7], the boundary element method [8], and the matricial Riccati
equation method [9]. Another approach adopted by several researchers [10}12] is to
represent a non-uniform duct with a series of stepped uniform ducts and systematically
account for the re#ection and transmission process which occurs at each intersection of the
stepped elements. These conventional methods require an iterative calculation or solution
of a very high-dimensional numerical problem due to the segmentation of the duct into
many subsections. In the author's previous paper [13], a more e$cient analytical method
was presented, which requires neither segmentation nor iterative calculation. In this
method, spherical co-ordinates were introduced according to the geometry of the
non-uniform section of the duct, thereby determining analytically a system of characteristic
functions for various pro"les of the non-uniform portion.

The present study is an extension of the previous work. The new points of the present
paper are as follows:

(1) A more e$cient formulation based on a variational principle is presented.
(2) A numerical computation is carried out for the case in which a slight change of the

duct pro"le is helpful in applying the present method. The previous paper pointed out
such a case, but did not present numerical examples for it.

2. METHOD OF SOLUTION

The system model to be considered is shown in Figure 1. Two semi-in"nite uniform
duct sections are joined by a non-uniform transition section of length ¸. For all sections, the
side wall of the duct is assumed to be rigid. The cylindrical co-ordinates r, u and z are used
to express the solution in the uniform sections z)0 and ¸)z, while the spherical
co-ordinates R, h and u are introduced to determine analytically the characteristic functions
for the non-uniform portion 0)z)¸. The origin O of the spherical co-ordinates is chosen
0022-460X/01/170369#08 $35.00/0 ( 2001 Academic Press



Figure 1. Computational model and co-ordinate systems (diverging (a) and converging (b) tapered transition
sections).

Figure 2. Diagram of duct and symbols.

370 LETTERS TO THE EDITOR
as the apex of a cone having a side wall tangent to the duct wall at the largest cross-
section.

To derive the governing equations in terms of a weighted-integral form, a variational
principle is introduced. Considering harmonic motion of the form e*ut, the variational
principle can be expressed as
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interest. The wave number k is given by

k"u/c , (2)

where c is the speed of sound. By using Green's theorem and the momentum equation
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i
"Lp

i
/Lz, equation (1) can be transformed into

!

3
+
i/1
PPP

V1

(+2p
i
#k2p

i
)dp

i
d<

i

#P
2n

0
P
a1

0
GA

Lp
1

Lz
!

Lp
2

Lz B dp
2
!(p

1
!p

2
)
L (dp

1
)

Lz HK
z/0

rdrdu

#P
2n

0
P
a2

0
GA

Lp
2

Lz
!

Lp
3

Lz B dp
3
!(p

2
!p

3
)
L (dp

2
)

Lz HK
z/L

rdrdu

#

3
+
i/1
PP

Wi

Lp
i

LN
i

dp
i
d=

i
"0, (3)

where N
i
represents the outward normal of the duct wall=

i
(Figure 2). Equation (3) yields

the following governing equations:
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Equation (4) represents the wave equation in each domain. Equations (5) and (6) indicate
that the sound pressure and the #uid particle velocity are continuous at the interfaces
between the uniform and non-uniform portions. Equation (7) corresponds to the condition
that the #uid particle velocity in the direction normal to the rigid duct wall vanishes.

In the subsequent analysis, we "rst determine admissible functions for the sound
pressures p

1
, p

2
and p

3
by solving the wave equation analytically. We then use the Galerkin

method to transform the variational principle (3) into algebraic linear equations that are
solved to determine the re#ection and transmission coe$cients.

Applying the cylindrical co-ordinates as shown in Figure 1 to equations (4) and (7) for
i"1 and 3, the admissible functions for p

1
and p

3
can be expressed as
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Note that the constants k
100

"k
200

"0 are de"ned such that equations (8) and (9) include
the plane wave mode having a constant sound pressure distribution throughout the
cross-section of the duct.

In equations (8) and (9), C
1ml, C

2mn
and C

3mn
represent the incident, re#ected and

transmitted waves respectively. Since the purpose here is to determine the re#ection and
transmission coe$cients for a prescribed mode (m, l) of the incident wave, the incident wave
is expressed in terms of the mode (m, l) alone. The summation over n in equations (8) and (9)
can be physically explained by the fact that the divergence or convergence, under a modal
excitation with mode (m, l), will generate re#ections and transmissions following a series of
radial modes having the same circumferential wave number m. A summation for m is not
necessary here, since the three sections, z)0, 0)z)¸ and ¸)z, are coaxial. This
method can be applied to non-coaxial cases by using admissible functions expressed in
terms of a series of circumferential modes.

Expressing equation (4) for i"2 in terms of the spherical co-ordinates shown by Figure 1
and solving the resulting equation leads to [13]
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where F
GAUSS

denotes the Gaussian hypergeometric series, j is the characteristic value, and
a is a parameter determined by a(a#1)"j. The characteristic value j is determined such
that solution (14) satis"es the boundary condition

dH
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"0 at h"hM . (15)

Substituting the admissible functions (8), (9) and (12) into equation (3) and considering the
variation with respect to C

1ml, C
2mn

, C
3mn

and A
mnl

leads to a system of algebraic linear
homogeneous equations for the generalized co-ordinates C
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2mn

, C
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and A
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. By
solving this system of equations, we can determine the following re#ection coe$cient R

ml
and transmission coe$cient ¹

ml for a speci"ed incident mode (m, l):

R
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ml"DC

3ml/C1mlD . (16)

In the previous paper [13], the boundary conditions were derived through physical
intuition and then the conventional Fourier}Bessel expansion technique was used to derive
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algebraic equations with respect to the generalized co-ordinates. As a result, it was
necessary to treat the diverging and converging cases separately (see pp. 741}742 in
reference [13]). In the present study, on the other hand, the combined and integrated form
(3) of the governing equations based on the variational principle (1) requires only a routine
substitution of the admissible functions (8), (9) and (12) into equation (3) to obtain algebraic
equations for the generalized co-ordinates.

3. NUMERICAL EXAMPLES

To verify the present analysis, numerical computation was carried out for identical cases
given in the previous paper [13]. The results obtained from the present analysis completely
agree with those shown in Figures 4 and 5 in the previous paper. For brevity, these "gures
are not presented here.

Numerical calculation is conducted for the case in which a slight change of the duct
pro"le e!ects the use of the spherical co-ordinates (for details, see p. 740 of the previous
paper [13]). Figure 3 shows the geometry of the transition section employed as a numerical
example. Only the diverging transition section is shown, because the converging transition
section is exactly the reverse of the diverging one. The geometry of the diverging transition
section is determined by
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Figures 4 and 5 show the solutions for the diverging and converging tapered transition
sections respectively. These results are shown within the frequency range
u'max(ck

1ml, ck2ml), in which the mode (m, l) is an advancing wave in all portions of the
duct, and hence extremely useful in engineering applications. Below this frequency domain,
the mode (m, l) does not propagate since both or either of the wave numbers k

1ml and k
2ml is

a pure imaginary number, as can be seen from equation (10).
To verify the numerical results, numerical computation was carried out according to

a conventional method that represents the non-uniform section with a series of stepped
Figure 3. Pro"le of transition section employed as numerical example (only the diverging case is shown; the
converging case is exactly the reverse of the diverging one).



Figure 4. Re#ection coe$cient R
ml and transmission coe$cient ¹

ml for diverging tapered transition section
shown in Figure 3: **, present method; f and L, conventional method; (a) incident mode (m, l)"(0, 0), (b)
incident mode (m, l)"(1, 1), (c) incident mode (m, l)"(2, 1).
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uniform ducts and applies the method described in reference [14]. The number of the
elements is 10. The result obtained by the conventional method are marked in Figures 4 and 5.
Acceptable agreement can be con"rmed between the results obtained by the present
analysis and those of the conventional theoretical prediction.

4. CONCLUSION

A method of solution based on a variational principle has been presented in this paper for
the acoustic wave propagation in ducts having a continuous change in cross-sectional area.
This method is more e$cient than the previous approach [13] using the conventional
Fourier}Bessel expansion technique, because the present method requires only a routine
substitution of the admissible functions into the combined and integrated form of the
governing equations for obtaining linear algebraic equations for the generalized co-
ordinates. The numerical results obtained by the present method are in good agreement
with the solutions given in the previous paper [13].

A numerical study in this paper addressed the case in which a slight change of the duct
pro"le is helpful to e!ect the use of the proposed analytical approach. As a veri"cation of
the numerical results, these are compared with the results obtained by a conventional
method that approximates the cross-sectional area variations as a series of stepwise
expansions and contractions, and applies the method described in reference [14].
Acceptable agreement was con"rmed between the results from the present and the
conventional methods.



Figure 5. Re#ection coe$cient R
ml and transmission coe$cient ¹

ml for converging tapered transition section
which is exactly the reverse of the diverging one:**, present method; f and L, conventional method; (a) incident
mode (m, l)"(0, 0), (b) incident mode (m ,l)"(1, 1), (c) incident mode (m, l)"(2, 1).

LETTERS TO THE EDITOR 375
REFERENCES

1. W. EVERSMAN, E. L. COOK and R. J. BECKEMEYER 1975 Journal of Sound and <ibration
38, 105}123. A method of weighted residuals for the investigation of sound transmission in
non-uniform ducts without #ow.

2. P. T. VO and W. EVERSMAN 1978 Journal of Sound and <ibration 56, 243}250. A method
of weighted residuals with trigonometric basis functions for sound transmission in circular
ducts.

3. W. EVERSMAN and R. J. ASTLEY 1981 Journal of Sound and <ibration 74, 89}101.
Acoustic transmission in non-uniform ducts with mean #ow. Part I: the method of weighted
residuals.

4. R. J. ASTLEY and W. EVERSMAN 1978 Journal of Sound and<ibration 57, 367}388. A "nite element
method for transmission in non-uniform ducts without #ow: comparison with the method of
weighted residuals.

5. R. J. ASTLEY and W. EVERSMAN 1981 Journal of Sound and <ibration 74, 103}121. Acoustic
transmission in non-uniform ducts with mean #ow. Part II: the "nite element method.

6 A. H. NAYFEH, J. E. KAISER, R. L. MARSHALLand C. J. HURST 1980 Journal of Sound and<ibration
71, 241}259. A comparison of experiment and theory for sound propagation in variable area
ducts.

7. C. K. W. TAM 1971 Journal of Sound and<ibration 18, 339}351. Transmission of spinning acoustic
modes in a slightly non-uniform duct.

8. A. D. SAHASRABUDHE, M. L. MUNJALand R. S. ANANTHA 1992 Noise Control Engineering Journal
38, 27}38. Design of expansion chamber mu%ers incorporating 3-D e!ects.



376 LETTERS TO THE EDITOR
9. V. PAGNEUX, N. AMIR and J. KERGOMARD 1996 Journal of the Acoustical Society of America 100,
2034}2048. A study of wave propagation in varying cross-section waveguides by modal
decomposition. Part I. Theory and validation.

10. W. E. ZORUMSKI and L. R. CLARK 1971 ;npublished working paper, NASA ¸angley Research
Center. Sound radiation from a source in an acoustically treated circular duct.

11. R. J. ALFREDSON 1972 Journal of Sound and <ibration 23, 433}442. The propagation of sound in
a circular duct of continuously varying cross-sectional area.

12. A. SADAMOTO, Y. MURAKAMI and S. MASUDA 1993 Journal of Acoustical Society of Japan 49,
235}242. Calculation for re#ection and transmission of higher-order mode sound waves at
sections of varying cross-sectional area in circular ducts (in Japanese).

13. M. UTSUMI 1999 Journal of Sound and <ibration 227, 735}748. An e$cient method for sound
transmission in non-uniform circular ducts.

14. J. MILES 1944 Journal of the Acoustical Society of America 16, 14}19. The re#ection of sound due
to a change in cross section of a circular tube.


	1. INTRODUCTION
	2. METHOD OF SOLUTION
	Figure 1
	Figure 2

	3. NUMERICAL EXAMPLES
	Figure 3
	Figure 4

	4. CONCLUSION
	Figure 5

	REFERENCES

